金屬熱處理是機械制造中的重要工藝之一,與其他加工工藝相比,熱處理一般不改變工件的形狀和整體的化學成分,而是通過改變工件內部的顯微組織,或改變工件表面的化學成分,賦予或改善工件的使用性能。其特點是改善工件的內在質量,而這一般不是肉眼所能看到的。為使金屬工件具有所需要的力學性能、物理性能和化學性能,除合理選用材料和各種成形工藝外,熱處理工藝往往是必不可少的。鋼鐵是機械工業中應用最廣的材料,鋼鐵顯微組織復雜,可以通過熱處理予以控制,所以鋼鐵的熱處理是金屬熱處理的主要內容。另外,鋁、銅、鎂、鈦等及其合金也都可以通過熱處理改變其力學、物理和化學性能,以獲得不同的使用性能。 熱處理工藝一般包括加熱、保溫、冷卻三個過程,有時只有加熱和冷卻兩個過程。這些過程互相銜接,不可間斷。加熱是熱處理的重要工序之一。金屬熱處理的加熱方法很多,最早是采用木炭和煤作為熱源,近而應用液體和氣體燃料。電的應用使加熱易于控制,且無環境污染。利用這些熱源可以直接加熱,也可以通過熔融的鹽或金,以至浮動粒子進行間接加熱。金屬加熱時,工件暴露在空氣中,常常發生氧化、脫碳(即鋼鐵零件表面碳含量降低),這對于熱處理后零件的表面性能有很不利的影響。因而金屬通常應在可控氣氛或保護氣氛中、熔融鹽中和真空中加熱,也可用涂料或包裝方法進行保護加熱。加熱溫度是熱處理工藝的重要工藝參數之一,選擇和控制加熱溫度,是保證熱處理質量的主要問題。加熱溫度隨被處理的金屬材料和熱處理的目的不同而異,但一般都是加熱到相變溫度以上,以獲得高溫組織。另外轉變需要一定的時間,因此當金屬工件表面達到要求的加熱溫度時,還須在此溫度保持一定時間,使內外溫度一致,使顯微組織轉變完全,這段時間稱為保溫時間。采用高能密度加熱和表面熱處理時,加熱速度極快,一般就沒有保溫時間,而化學熱處理的保溫時間往往較長。
1、保持氣壓:為了避免氣體泄漏,光亮爐中的維護氣體應保持一定的正氣壓。如果維護氣體是氫氣,它通常應該達到20千巴以上。 2、退火氣氛:純氫通常用作不銹鋼管的退火氣氛。氣氛的純度優選高于99.99%。如果大氣中有另一種惰性氣體,純氫的純度可以適當降低,但禁止含有過量的氧氣和水蒸氣。 3、應注意退火溫度是否達到規定溫度:不銹鋼的熱處理通常是固溶熱處理或退火。該工藝的溫度范圍為1040~1120℃,加工過程中不銹鋼管也可在退火爐的檢查孔內進行檢查。退火區的不銹鋼管應是白熾的,不會出現軟化和下垂。 4、爐子里一定沒有水蒸汽。首先,鉆孔前必須反復檢查爐體是否干燥。首次裝爐時,爐體材料必須烘干燥。二是檢查進入爐子的不銹鋼管上是否有殘留的水漬。一些不銹鋼管可能有孔。此時,不要將積水帶入光亮爐,否則會對不銹鋼管加工過程產生負面影響。 5、爐體密封性能:光亮退火爐必須密封并與外界空氣隔離。通常氫氣被用作維護氣體。爐體只有一個排氣口。它的功能是促進氫的點燃。檢查方法是在退火爐的每個接縫處擦水,觀察是否有氣體泄漏。容易泄漏的部分是退火爐進出管材的地方。這里的密封圈容易磨損,需要經常檢查和更換。
1、正火:將鋼材或鋼件加熱到臨界點AC3或ACM以上的適當溫度保持一定時間后在空氣中冷卻,得到珠光體類組織的熱處理工藝。 2、退火annealing:將亞共析鋼工件加熱至AC3以上20—40度,保溫一段時間后,隨爐緩慢冷卻(或埋在砂中或石灰中冷卻)至500度以下在空氣中冷卻的熱處理工藝。 3、固溶熱處理:將合金加熱至高溫單相區恒溫保持,使過剩相充分溶解到固溶體中,然后快速冷卻,以得到過飽和固溶體的熱處理工藝。 4、時效:合金經固溶熱處理或冷塑性形變后,在室溫放置或稍高于室溫保持時,其性能隨時間而變化的現象。 5、固溶處理:使合金中各種相充分溶解,強化固溶體并提高韌性及抗蝕性能,消除應力與軟化,以便繼續加工成型。 6、時效處理:在強化相析出的溫度加熱并保溫,使強化相沉淀析出,得以硬化,提高強度。 7、淬火:將鋼奧氏體化后以適當的冷卻速度冷卻,使工件在橫截面內全部或一定的范圍內發生馬氏體等不穩定組織結構轉變的熱處理工藝。
因為金屬工件的加熱、冷卻等操作,需要十幾個甚至幾十個動作來完成。這些動作內在真空熱處理爐內進行,操作人員無法接近,因此對真空熱處理電爐的自動化程度的要求較高。同時,有些動作,如加熱保溫結束后,金屬工件進行淬火工序須六、七個動作并且要在15秒鐘以內完成。這樣敏捷的條件來完成許多動作,很容易造成操作人員的緊張而構成誤操作。因此,只有較高的自動化才能準確、及時按程序協調。金屬零件進行真空熱處理均在密閉的真空爐內進行,嚴格的真空密封眾所周知。 因此,獲得和堅持爐子原定的漏氣率,保證真空爐的工作真空度,對確保零件真空熱處理的質量有著非常主要的意義。所以真空熱處理爐的一個關鍵問題,就是要有可靠的真空密封構造。為了保證真空爐的真空性能,真空熱處理爐結構設計中必須道循一個基本原則,就是爐體要采用氣密焊接,同時在爐體上盡量少開或者不開孔,少采用或者避免采用動密封結構,以盡量減少真空泄露的機遇。
過熱從軸承零件粗糙口上可觀察到淬火后的顯微組織過熱。但要確切判斷其過熱的程度必須觀察顯微組織。若在GCr15鋼的淬火組織中出現粗針狀馬氏體,則為淬火過熱組織。形成原因可能是淬火加熱溫度過高或加熱保溫時間太長造成的全面過熱;也可能是因原始組織帶狀碳化物嚴重,在兩帶之間的低碳區形成局部馬氏體針狀粗大,造成的局部過熱。過熱組織中殘留奧氏體增多,尺寸穩定性下降。由于淬火組織過熱,鋼的晶體粗大,會導致零件的韌性下降,抗沖擊性能降低,軸承的壽命也降低。過熱嚴重甚至會造成淬火裂紋。 欠熱淬火溫度偏低或冷卻不良則會在顯微組織中產生超過標準規定的托氏體組織,稱為欠熱組織,它使硬度下降,耐磨性急劇降低,影響托輥配件軸承壽命。淬火裂紋高或冷卻太急,熱應力和金屬質量體積變化時的組織應力大于鋼材的抗斷裂強度;工作表面的原有缺陷(如表面微細裂紋或劃痕)或是鋼材內部缺陷(如夾渣、嚴重的非金屬夾雜物、白點、縮孔殘余等)在淬火時形成應力集中;嚴重的表面脫碳和碳化物偏析;零件淬火后回火不足或未及時回火;前面工序造成的冷沖應力過大、鍛造折疊、深的車削刀痕、油溝尖銳棱角等。
存在于淬火件不同部位上能引起應力集中的因素(包括冶金缺陷在內),對淬火裂紋的產生都有促進作用,但只有在拉應力場內(尤其是在最大拉應力下)才會表現出來,若在壓應力場內并無促裂作用。 淬火冷卻速度是一個能影響淬火質量并決定殘余應力的重要因素,也是一個能對淬火裂紋賦于重要乃至決定性影響的因素。為了達到淬火的目的,通常必須加速零件在高溫段內的冷卻速度,并使之超過鋼的臨界淬火冷卻速度才能得到馬氏體組織。 就殘余應力而論,這樣做由于能增加抵消組織應力作用的熱應力值,故能減少工件表面上的拉應力而達到抑制縱裂的目的。其效果將隨高溫冷卻速度的加快而增大。而且,在能淬透的情況下,截面尺寸越大的工件,雖然實際冷卻速度更緩,開裂的危險性卻反而愈大。這一切都是由于這類鋼的熱應力隨尺寸的增大實際冷卻速度減慢,熱應力減小,組織應力隨尺寸的增大而增加,最后形成以組織應力為主的拉應力作用在工件表面的作用特點造成的。并與冷卻愈慢應力愈小的傳統觀念大相徑庭。對這類鋼件而言,在正常條件下淬火的高淬透性鋼件中只能形成縱裂。避免淬裂的可靠原則是設法盡量減小截面內外馬氏體轉變的不等時性。僅僅實行馬氏體轉變區內的緩冷卻不足以預防縱裂的形成。
金屬熱處理是機械制造中的重要工藝之一,與其他加工工藝相比,熱處理一般不改變工件的形狀和整體的化學成分,而是通過改變工件內部的顯微組織,或改變工件表面的化學成分,賦予或改善工件的使用性能。其特點是改善工件的內在質量,而這一般不是肉眼所能看到的。 為使金屬工件具有所需要的力學性能、物理性能和化學性能,除合理選用材料和各種成形工藝外,熱處理工藝往往是必不可少的。鋼鐵是機械工業中應用廣的材料,鋼鐵顯微組織復雜,可以通過熱處理予以控制,所以鋼鐵的熱處理是金屬熱處理的主要內容。另外,鋁、銅、鎂、鈦等及其合金也都可以通過熱處理改變其力學、物理和化學性能,以獲得不同的使用性能
真空熱處理不僅是某些特殊合金熱處理的必要手段,而且在一般工程用鋼的熱處理中也獲得應用,特別是工具、模具和精密耦件等。眾所周知零件經真空熱處理后,畸變小,質量高,且工藝本身操作靈活,無公害。 經真空熱處理后使用壽命較一般熱處理有較大的提高。例如某些模具經真空熱處理后,其壽命比原來鹽浴處理的高40~400%,而有許多工具的壽命可提高3~4倍左右。此外,真空加熱爐可在較高溫度下工作,且工件可以保持潔凈的表面,因而能加速化學熱處理的吸附和反應過程。因此,某些化學熱處理,如滲碳、滲氮、滲鉻、滲硼,以及多元共滲都能得到更快、更好的效果。
共焦掃描激光顯微鏡和Si2Mo電阻爐研究了熱處理條件對軋制態加硫易切削鋼中大尺寸延伸MnS夾雜物形狀控制的影響。結果顯示加熱速率、均熱溫度和均熱時間對延伸MnS夾雜物形狀斷面有很大的影響。在加熱速率為0.5~2K/s的連續加熱過程中,觀察到細長的MnS開裂。另外,MnS的開裂程度與加熱速率的上升呈反向關系。結果,當加熱速率為6K/s時未觀察到延伸MnS的分裂。在均溫實驗中,當溫度低于1073K時MnS沒有明顯的形狀變化。而當溫度為1473K時延伸MnS開裂并明顯地球化。相應地在1473K,當均熱時間從1小時增加到4小時時,夾雜物密度數值增加了,而平均長度縮短了。只有當均熱時間超過3小時或4小時,可以看到大量的MnS形狀從細長變為紡錘形或球形?;贐ibbsThompson關系和得到的實驗結果,討論了MnS夾雜物形狀演變的機制,MnS的形貌演變分為3個主要步驟:(1)首先,在加熱過程的開始階段,發生縱向收縮;(2)收縮之后在徑向產生擴展和收縮導致細長MnS的開裂;(3)漸漸地從開裂的部分形成球狀粒子。
⒈機械校正 采用機械或局部加熱的方法使變形工件產生局部微量塑性變形,同時伴隨著殘余內應力的釋放和重新分布達到校正變形的目的。常用的機械校正法有冷壓校正、淬火冷卻至室溫前的熱壓校正、加壓回火校正、使用氧-乙炔火焰或高頻對變形工件進行局部加熱的”熱點”校正、錘擊校正等。機械校正的零件在使用、放置過程中或進行精加工時,由于殘余應力的衰減和釋放可能部分地恢復原來的變形和產生新的變形。因此,對于承受高負荷的工件和精密零件,最好不要進行機械校正。必須進行機械校正時,校正達到的塑性應變應該超過熱處理變形的塑性應變,但校正塑性變形量必須控制在很小的范圍內,一般應大于彈性極限應變的10倍,小于條件強度極限的十分之一。校正要盡可能在淬火后應即進行,校正后應進行消除殘余應力處理。熱處理變形工件的校正,要求操作者具有熟練的技術并很費工時,因此,校正自動化是熱處理工作者的一項重要任務。 ⒉熱處理校正 對于因熱處理脹大或收縮變形而尺寸超差的工件,可以重新使用適當的熱處理方法對其變形進行校正。常用的熱處理校正法有: ⑴在ac1溫度下加熱急冷法對脹大變形的工件進行收縮處理 工件不發生組織比體積變化的相變,因此,不會產生組織應力,只產生因心部和表面熱收縮量不同而形成的熱應力。急冷時工件表面急劇收縮對溫度較高塑性較好的心部施以壓應力,使工件沿主導應力方向產生塑性收縮變形,這是熱處理收縮處理的機理。鋼的化學成分不同,其熱傳導和熱膨脹系數不同,在ac1溫度下加熱后,鋼的塑性和屈服強度也不相同,靠熱應力所能達到的塑性收縮變形效果不盡相同,一般碳素鋼和低合金鋼的收縮效果比較明顯,高碳高合金鋼的收縮效果則比較差。 收縮處理的加熱溫度應根據ac1選擇,應保證在水中激冷時不淬硬為原則,對奧氏體穩定性差的碳鋼可采用稍高于ac1的溫度,以利用相變溫度區的相變超塑性達到最大的收縮效果。各類鋼的加熱溫度是;